Abstract

SAG (sensitive to apoptosis gene) or ROC2/RBX2 is the second family member of ROC1/RBX1, a component of SCF (Skp1, Cullin, F-box protein) and VCB (von Hippel-Lindau (VHL), Cullin and Elongin B/C) E3 ubiquitin ligases. SAG protected cells from hypoxia-induced apoptosis when overexpressed. We report here that SAG was subjected to hypoxia induction at the levels of mRNA and protein. Hypoxia induction of SAG was largely HIF-1alpha dependent. A consensus HIF-1-binding site, GCGTG was identified in the first intron of the SAG gene. In response to hypoxia, HIF-1 bound to this site and transactivated SAG expression. SAG transactivation required both the intact binding site in cis and HIF-1alpha in trans. On the other hand, like its family member, ROC1, SAG promoted VHL-mediated HIF-1alpha ubiquitination and degradation, which was significantly inhibited upon small interfering RNA silencing of SAG or ROC1. Furthermore, the endogenous HIF-1alpha at both basal and hypoxia-induced levels was significantly increased upon SAG silencing. Finally, SAG forms in vivo complex with Cul-5 and VHL under hypoxia condition. These results suggest an HIF-1-SAG feedback loop in response to hypoxia, as follows: hypoxia induces HIF-1 to transactivate SAG. Induced SAG then promotes HIF-1alpha ubiquitination and degradation. This feedback loop may serve as a cellular defensive mechanism to reduce potential cytotoxic effects of prolonged HIF-1 activation under hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.