Abstract
Coarse-grained models of polyaromatic hydrocarbons parametrized by employing the SAFT-γ Mie approach are presented and assessed by comparison with experimental data and all-atom models in their ability to describe liquid densities, isothermal compressibilities, thermal expansivities, viscosities, and interfacial tensions. The structural behaviour characterized by the center of mass and angular radial distribution functions are also benchmarked. The SAFT-γ Mie force field models are shown to deliver quantitatively accurate predictions while promising significant speedups in the computational cost of performing molecular dynamics simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.