Abstract

Safranal, a major constituent of saffron, possesses antioxidant and anti-apoptotic properties showing considerable neuroprotective effects. However, whether safranal shows therapeutic effect on Parkinson's disease (PD) remains unknown. In this study, we aimed to investigate the potential effect of safranal on PD using an in vitro model of PD induced by rotenone. We found that safranal significantly inhibited rotenone-induced cell death in a dose-dependent manner. Moreover, safranal also markedly suppressed the reactive oxygen species (ROS) generation and cell apoptosis induced by rotenone. Further investigation showed that safranal inhibited the expression of kelch-like ECH-associated protein 1 (Keap1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in rotenone-induced dopaminergic neurons. Meanwhile, the downstream antioxidant enzyme genes of Nrf2 including glutathione S transferase (GST), glutamate-cysteine ligase catalytic subunit (GCLc), NADPH-quinone oxidoreductase 1 (NQO1) and heme oxygenase1 (HO-1) were also induced by safranal in rotenone-induced dopaminergic neurons. However, the knockdown of Nrf2 significantly abrogated the protective effect of safranal on rotenone-induced neurotoxicity. Taken together, our study suggests that safranal protects against rotenone-induced neurotoxicity associated with Nrf2 signaling pathway implying that safranal may serve as a potent and promising therapeutic drug for the treatment of PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.