Abstract

There are generally two approaches to the design of a neural fuzzy system: 1) design by human experts, and 2) design through a self-organization of the numerical training data. While the former approach is highly subjective, the latter is commonly plagued by one or more of the following major problems: 1) an inconsistent rulebase; 2) the need for prior knowledge such as the number of clusters to be computed; 3) heuristically designed knowledge acquisition methodologies; and 4) the stability-plasticity tradeoff of the system. This paper presents a novel self-organizing neural fuzzy system, named Self-Adaptive Fuzzy Inference Network (SaFIN), to address the aforementioned deficiencies. The proposed SaFIN model employs a new clustering technique referred to as categorical learning-induced partitioning (CLIP), which draws inspiration from the behavioral category learning process demonstrated by humans. By employing the one-pass CLIP, SaFIN is able to incorporate new clusters in each input-output dimension when the existing clusters are not able to give a satisfactory representation of the incoming training data. This not only avoids the need for prior knowledge regarding the number of clusters needed for each input-output dimension, but also allows SaFIN the flexibility to incorporate new knowledge with old knowledge in the system. In addition, the self-automated rule formation mechanism proposed within SaFIN ensures that it obtains a consistent resultant rulebase. Subsequently, the proposed SaFIN model is employed in a series of benchmark simulations to demonstrate its efficiency as a self-organizing neural fuzzy system, and excellent performances have been achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call