Abstract

ObjectiveSafflower yellow (SY) is an active component ofCarthamus tinctorius L. that is widely used in orthopedics. This study aimed to evaluate the role of SY in angiogenesis and osteogenic differentiation. MethodsThe migration and in vitro angiogenesis of SY (4.5, 9.0, 18 μg/ml)-treated human umbilical vein endothelial cells (HUVEC-12) were assessed by transwell and tube formation assay, respectively. Osteogenic differentiation ability was detected by alkaline phosphatase (ALP) and Alizarin Red S staining. The mRNA and protein expressions of related markers were determined by RT-qPCR and Western blot. ResultsThe migration and tube formation ability of HUVEC-12 were promoted by SY. Furthermore, SY facilitated the angiogenesis and osteogenic differentiation in the co-culture of HUVEC-12 and BMSCs by increasing hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), Angiopoietin-2 (Ang-2), ALP, runt-related transcription factor 2 (Runx2) and osteopontin-1 (OPN-1) levels. Inhibition of HIF-1α expression by 3-(5-hydroxymethl-2-furyl)-1-benzylindazole (YC-1), restrained SY-induced proliferation, migration and angiogenesis of HUVEC-12 and the increased protein levels of VEGF, Ang-2, ALP, Runx2 and OPN-1. Finally, WD repeat and SOCS box-containing protein-1 (WSB-1)/Von Hippel-Lindau protein (p-VHL) pathway was involved in the beneficial effect of SY. ConclusionSY promotes osteogenic differentiation via enhancing angiogenesis by regulating pVHL/HIF-1α/VEGF signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call