Abstract
In this paper we demonstrate how to construct barrier certificates for safety verification of nonlinear hybrid systems using sum of squares methodologies, with particular emphasis on the computational challenges of the technique when applied to an Advanced Life Support System. The controlled system aims to ensure that the carbon dioxide and oxygen concentrations in a Variable Configuration CO2 Removal (VCCR) subsystem never reach unacceptable values. The model we use is in the form of a hybrid automaton consisting of six modes each with nonlinear continuous dynamics of state dimension 10. The sheer size of the system makes the task of safety verification difficult to tackle with any other methodology. This is the first application of the sum of squares techniques to the safety verification of an intrinsically hybrid system with such high dimensional continuous dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.