Abstract

Gabion has been extensively used in retaining walls and slope protection. This study carries out a safety risk analysis of a new structure combining basalt fiber reinforcement (BFR) and the traditional gabion structure. The micro-parameters of BFR and soil were calibrated by using the 3D discrete element method after the tensile test of BFR was completed. The mechanical property of the gabion unit was investigated by using a refined model and a numerical test of uniaxial compression. This work developed a simplified method to simulate the seepage effect. The stress condition and sliding displacement between gabions were also investigated. Deformation, stress, and porosity were all used to evaluate the stability of the new type of gabion slope. According to this study, BFR has a tensile strength of 68.22 MPa, and the safety factor increased by 25.68% after using these BFR gabions. The damage is mainly manifested by bending the BFRs and the dislocation of the gabion units, as the slope does not slip. It is indicated this novel gabion structure has a lower safety risk compared to traditional ones, and thus can be popularized and used in retaining walls and slope protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call