Abstract

Ethnopharmacological relevance: Tucumã (Astrocaryum vulgare)is a fruit native to the Amazon region. Extracts from the peel and pulp are thought of as promising treatments for bacterial infections. The primary constituents of Tucumã oil and butter possess unsaturated carbon chains that are susceptible to oxidation by light or heat. The oils have high volatility and low aqueous solubility that limits their use without a vehicle. Nanotechnology refers to techniques to solve these problems. Nanostructured lipid carriers (NLC), for example, protect fixed oils degradation by heat or light, as well as from oxidation and evaporation, ensuring greater stability and function, thereby prolonging the useful life of the final product. Study objectives: The objective of this study was to evaluate the hemolytic, cytotoxic, antimicrobial and antibiofilm properties of an NLC containing Tucumã butter and oil soasto improve the solubility and photosensitivity of the compounds, generating better pharmacological efficacy. Materials and methods: The NLC was assessed for stability for 60 days. The cytotoxicity of nanoparticles in peripheral blood mononucleated cells was determined in culture using assays for cell viability, DNA damage, oxidative metabolism and damage to human erythrocytes. Antimicrobial activity was determined using the broth microdilution technique and antibiofilm activity according to standardized protocols. Results: The Tucumã NLC remained stable throughout the evaluated period, with pH between 5.22–5.35, monodisperse distribution (PDI<0.3) and average particle size of 170.7 ± 3nm. Cytotoxicity studies revealed that the NLC is safe and modulates inflammatory processes, demonstrated by increased cell viability and nitric oxide levels. There was low hemolytic activity of the NLC against human erythrocytes almost concentrations tested. Conclusion: Taken together, the data suggest that NLC containing Tucumã oil and butter showed antimicrobial and antibiofilm activity against organisms that cause morbidity and mortality in humans. They may be alternative solutions to public health problems related to bacterial infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call