Abstract

China’s terrain is complex, both plain, microhill (heavy-hill) and mountainous terrain; the hidden dangers of highway construction are prominent. Construction site management, production safety management, and construction personnel management are difficult, and it is necessary to borrow advanced technology to establish information, and it is necessary to borrow advanced technology to establish information system to realize the visualization of safety monitoring. In the construction of highways, mountainous terrain is often complicated due to complex terrain, high mountains, and deep valleys. Excavation of the mountain mass is required to form high and steep slopes. For successful projects, safety monitoring is particularly important. Multisource data fusion is one of the computer application technologies. It is an information processing technology that is automatically analyzed and synthesized under certain criteria to complete the required decision-making and evaluation tasks. This paper analyzes high-speed data in the context of multisource data fusion. Study on highway slope construction safety monitoring. BP neural network fusion technology of multisource data fusion technology is used. A high-speed breccia-bearing silty clay slope is taken as the research object. The feedback information about the deployed monitoring system is fully used in the slope design and construction. The construction design parameters are reversed to predict the stability of the slope and ensure the safety of construction and operation of similar slopes of the entire expressway. The research in this paper finds that the maximum deviation between the slope displacement value and the measured value obtained by the slope monitoring based on multisource data fusion in this paper is 7.53%, which is less than 10%, which verifies the feasibility of the method in this paper. The research methods and ideas of this paper can also provide a reference for similar engineering research.

Highlights

  • General highway construction project companies and higher-level units cannot implement real-time, comprehensive, and image-based safety monitoring of construction sites due to traffic and environmental reasons: construction management efficiency is not high and managers are struggling with high-load and high-intensity inspections on construction sites or unannounced inspections; many safety management actions are ex post facto

  • Certain environments, and other major dangerous sources, there is a dire need to use advanced science and technology to establish real-time traceable dynamic engineering archives and information-oriented construction site safety monitoring systems, to provide powerful technical means to improve the work efficiency of on-site management personnel, reduce the probability of Journal of Advanced Transportation accidents in highway construction, and create a “safe construction site” through visualization and information technology, which can provide a strong guarantee for the safe production and emergency rescue of engineering projects

  • With the development of large-scale highway engineering construction, under the requirements of safety production and quality supervision, the construction of a construction monitoring system can provide technical support for the project site and safety management informatization construction. It provides a strong guarantee for the safety production and emergency rescue of the engineering construction, strengthens and improves the safety awareness of construction personnel at all levels, and establishes real-time and traceable dynamic engineering archives to bring daily management work to a new level. e information-oriented construction site safety monitoring system provides a powerful technical means for improving the work efficiency of site management personnel and can bring unlimited benefits with limited investment. e present research uses the BP neural network data fusion method based on the multisource data fusion method to build a model to monitor the slope construction of the expressway

Read more

Summary

Introduction

General highway construction project companies and higher-level units cannot implement real-time, comprehensive, and image-based safety monitoring of construction sites due to traffic and environmental reasons: construction management efficiency is not high and managers are struggling with high-load and high-intensity inspections on construction sites or unannounced inspections; many safety management actions are ex post facto. It is not until a hidden safety hazard appears or a safety accident occurs after some time that it is discovered. Certain environments, and other major dangerous sources, there is a dire need to use advanced science and technology to establish real-time traceable dynamic engineering archives and information-oriented construction site safety monitoring systems, to provide powerful technical means to improve the work efficiency of on-site management personnel, reduce the probability of Journal of Advanced Transportation accidents in highway construction, and create a “safe construction site” through visualization and information technology, which can provide a strong guarantee for the safe production and emergency rescue of engineering projects

Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.