Abstract
Prevailing traffic conditions affect highway safety and the processes by which drivers perceive a stimulus, evaluate it, and execute a corresponding driving maneuver. Several efforts have been made to use microscopic traffic simulation for evaluating highway safety. However, these efforts faced serious challenges because previous acceleration and lane-changing models had been built in an accident-free environment with different layers of safety constraints. A new approach relies on a cognitive risk-based microscopic model to study the relationship between prevailing traffic conditions and the risk experienced by drivers in a traffic stream. The model can consider accidents endogenously through lane-changing logic and provide an indicator of relative roadway safety as experienced by drivers. Six scenarios are simulated. The results show the importance of lane changing to understanding accident and near-accident occurrence in simulation models. A risk value comparison reveals that work zone bottlenecks have a greater impact on drivers’ risk-taking tendencies than bottlenecks caused by uphill grades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.