Abstract

SMART (system-integrated modular advanced reactor) is a 330 MWt advanced integral PWR, which is under development at KAERI for seawater desalination and electricity generation. The conceptual design of the SMART desalination plant produces 40,000 m 3/day of potable water and generates about 90 MW of electricity, which are assessed as sufficient for a population of about 100,000. The SMART enhances safety by adopting the inherent safety design features such as the elimination of large break loss of coolant accidents, substantially large negative moderator temperature coefficients, etc. In addition, the safety goals of the SMART are achieved through the adoption of passive engineered safety systems such as an emergency core cooling system, passive residual heat removal system, safeguard vessel, and reactor and containment overpressure protection systems. This paper describes the design concept of the major safety systems of the SMART and presents the results of the safety analyses using a MARS/SMR code for the major limiting accidents including transient behaviors due to desalination system disturbances. The analysis results employing conservative initial/boundary conditions and assumptions show that the safety systems of the SMART conceptual design adequately remove the core decay heat and mitigate the consequences of the limiting accidents, and thus secure the plant to a safe condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call