Abstract
This paper investigates safety-critical event-triggered control (ETC) for nonlinear systems. It proposes a new ETC strategy that ensures event-triggered safety by using a tunable input-to-state safe barrier function. Then, a method is devised to effectively save communication resources and reduce computational load through the construction of a suitable dynamic event-triggered mechanism. Furthermore, the exclusion of Zeno behavior is guaranteed for the closed-loop system. Finally, this paper culminates by presenting two illustrative examples that showcase the effectiveness of proposed control strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.