Abstract

This paper presents extensions of control barrier function (CBF) and control Lyapunov function (CLF) theory to systems wherein all actuators cause impulsive changes to the state trajectory, and can only be used again after a minimum dwell time has elapsed. These rules define a hybrid system, wherein the controller must at each control cycle choose whether to remain on the current state flow or to jump to a new trajectory. We first derive a sufficient condition to render a specified set forward invariant using extensions of CBF theory. We then derive related conditions to ensure asymptotic stability in such systems, and apply both conditions online in an optimization-based control law with aperiodic impulses. We simulate both results on a spacecraft docking problem with multiple obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.