Abstract

Maintaining the given operational area is critical in guaranteeing the safety of nonlinear second-order multiple autonomous agents. The properties of multiagent systems and several physical constraints, including bounded modeling error and actuator saturation, dramatically affect the maneuverability of multiagent systems inside the specified operational area. Moreover, the existing safety control algorithms heavily rely on the boundaries of the operational area. To overcome this issue, by constructing a novel scalable control technique, the safety area for multiagent systems can be transformed into input-constrained control barriers along each coordinate of motion for agents. It is shown that the safety of each agent and the global asymptotic stability are guaranteed under the proposed distributed control algorithm. The asymmetrical closed-form scheme for the agent's safety rule is built by applying the adjustable low and high bounds of the control signals associated with the actual control inputs, which are repeatedly computed by using new local measurements as the agents move, and the saturated control inputs with asymmetrical constraints are ensured. The absolute values of the modeling errors and external disturbances can be tracked by the proposed safety controller. Super-twisting control (STC) is employed to address the formation constraint problem of multiagent systems, where the effect that arises from uncertain nonlinear complexity of the agents and external disturbances is eliminated. Moreover, finite-time convergence, a desirable robust behavior of multiagent systems, and the formation constraint are simultaneously achieved. Furthermore, the stability of the proposed integrated control strategy for multiagent systems is analyzed, which reveals that the proposed distributed safety control can seamlessly integrate with the robust control protocol with minimum modification under the directed information interaction topology. Safety formation control calibration and tuning are carried out, and comparative simulation results are provided to illustrate the effective performance of the obtained theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.