Abstract

A new vision in human–robot collaboration has allowed to place robots nearby human operators, working close to each other in industrial environments. As a consequence, human safety has become a dominant issue, together with production efficiency. In this paper we propose an optimization-based control algorithm that allows robots to avoid obstacles (like human operators) while minimizing the difference between the nominal acceleration input and the commanded one. Control Barrier Functions are exploited to build safety barriers around each robot link, to guarantee collision-free trajectories along the whole robot body. Human accelerations and velocities are computed by means of a bank of Kalman filters. To solve obstruction problems, two RGB-D cameras are used and the measured skeleton data are processed and merged using the mentioned bank of Kalman filters. The algorithm is implemented on an Universal Robots UR5 in order to validate the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.