Abstract

A liquid launch vehicle is an important carrier in aviation, and its regular operation is essential to maintain space security. In the safety assessment of fluid launch vehicle body structure, it is necessary to ensure that the assessment model can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process. Therefore, a belief rule base with interpretability (BRB-i) assessment method of liquid launch vehicle structure safety status combines data and knowledge. Moreover, an innovative whale optimization algorithm with interpretable constraints is proposed. The experiments are carried out based on the liquid launch vehicle safety experiment platform, and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform. The MSEs of the proposed model are 3.8000e-03, 1.3000e-03, 2.1000e-03, and 1.8936e-04 for 25%, 45%, 65%, and 84% of the training samples, respectively. It can be seen that the proposed model also shows a better ability to handle small sample data. Meanwhile, the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings, which indicates the interpretability of the BRB-i model. Experimental results show that, compared with other methods, the BRB-i model guarantees the model’s interpretability and the high precision of experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.