Abstract

Biochar is a product of the thermal decomposition of biomass under a limited supply of oxygen and can be deriving from pyrolysis or gasification. As the product is rich in highly recalcitrant carbon, it has been proposed as a soil amendment to improve soil fertility and to stock carbon in soils. However, the contaminant compounds present in biochar could represent potential environmental threats. The gasification biochar is a promising by-product, but its effects on soil microarthropods are still nearly unknown. The aim of this study was to assess, using a prognosis approach, any ecotoxicological consequences of four biochars (conifer, poplar, grape marc, and wheat straw) on the springtail Folsomia candida. This was assessed through a series of tests: an avoidance behavior test, a survival and reproduction test, and a test based on the hatching of eggs. Biochars were tested at different concentrations (pulverized and diluted w/w with an artificial standard soil). The results showed that the springtails did not tend to avoid the biochars' substrates up to the rate of 2-5%, but any higher levels of concentration caused the animals to keep away from it. While mortality was negatively affected only in the grape marc biochar, reproduction was significantly reduced in all biochars considered. The hatching of the eggs was anticipated at even the lowest concentrations of herbaceous biochars, while a severe delay was observed in both concentrations tested of the conifer biochar. The endpoints considered were negatively affected by pH, polycyclic aromatic hydrocarbons, and heavy metals (in order of importance). The findings confirmed the potential adverse effects that gasification biochars could have on soil microarthropods and demonstrated the necessity of introducing these tests into biochar characterization protocols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.