Abstract

Because repetitive transcranial magnetic stimulation (rTMS) is capable of inducing lasting alterations of cortical excitability, it represents a promising therapeutic tool in several neuropsychiatric disorders. However, rTMS, especially when applied chronically, may cause harmful effects in the stimulated tissue. To study the safety of chronic rTMS we used a novel small stimulation coil, which was specially designed to treat rats, and investigated brain tissue using in vivo localized proton magnetic resonance spectroscopy (MRS) and post mortem histological analysis. Histology was based on a modified stereology method in combination with immunohistochemistry applying antibodies against OX-6, OX-42, ED, and GFAP to detect any microglial and/or astrocytic activation 48 h after the last TMS session. Conscious rats were treated with a daily suprathreshold rTMS regimen of 1000 stimuli applied on 5 consecutive days at a frequency of 1 Hz. In comparison with control animals receiving magnetic stimulation over the lumbar spine, quantitative evaluations of cerebral metabolite concentrations by proton MRS revealed no significant alterations of N-acetyl-aspartate, creatine and phosphocreatine, choline-containing compounds, myo-inositol, glucose and lactate after chronic rTMS. Similarly to the in vivo results, post mortem histology revealed no changes in microglial and astrocytic activation after rTMS. In conclusion, these data provide support for the safety of chronic rTMS. However, they do not exclude acute changes on neurotransmitters systems or other physiologic responses during or directly after the rTMS treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.