Abstract

42 pediatric patients with iron overload, who underwent liver biopsy and DFX treatment after hematopoietic stem cell transplantation were included in the study group. The patients were divided into two groups diversified according to deferasirox trough plasma concentrations (DFX Ctrough) with cut-off equal to10 mcg/mL. The average dose of DFX was 25.9 mg/kg in the DFX Ctrough < 10 mcg/mL group versus 19.2 mg/kg in the DFX Ctrough > 10 mcg/mL group (p=0,0003). The mean duration of DFX treatment was 135.7 days in the DFX Ctrough < 10 mcg/mL group versus 41.8 days in the DFX Ctrough > 10 mcg/mL group (p<0.0001). The mean tissue iron concentration in the DFX Ctrough < 10 mcg/mL group was 261.9 μmol/g versus 133.4 μmol/g in the DFX Ctrough > 10 mcg/mL group (p < 0.0001). 21 patients (100%) in the DFX Ctrough > 10 mcg/mL group had ductopenia which was complete in 47.6% of them and severe in 52.4%. All patients with particularly high Ctrough (> 25 mcg/mL) were found to have total ductopenia. 90.5% of all deferasirox-related adverse events and 100% of major adverse events occurred in the DFX Ctrough > 10 mcg/mL group. In the DFX Ctrough < 10 mcg/mL group only one patient interrupted chelation therapy versus 16 (84.2%) patients in the DFX Ctrough > 10 mcg/mL group. We would recommend a close monitoring in pediatric hematopoietic transplant recipients subjected to deferasirox-based therapy because we have observed a high incidence of adverse events and discontinuation of chelation treatment.

Highlights

  • Over recent years, allogeneic hematopoietic stem cell transplantation has become an important technique for treating pediatric diseases, especially hematological and oncological disorders and congenital errors

  • The mean tissue iron concentration in the DFX Ctrough < 10 mcg/mL group was 261.9 μmol/g versus 133.4 μmol/g in the DFX Ctrough > 10 mcg/mL group (p < 0.0001). 21 patients (100%) in the DFX Ctrough > 10 mcg/mL group had ductopenia which was complete in 47.6% of them and severe in 52.4%

  • DFX is licensed for use as firstline therapy for chronic blood transfusion-related iron overload in patients aged 2 years and older [15]

Read more

Summary

Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has become an important technique for treating pediatric diseases, especially hematological and oncological disorders and congenital errors. Iron overload (IO), a relatively common but often neglected transplant-related complication, has been associated with poor prognosis in patients undergoing allo-HSCT for onco-hematological diseases [1]. Transfused red blood cells (RBCs), both during initial treatment and during the post-transplant period, is considered the main cause of iron overload in HSCT recipients [3]. Intensive cytotoxic therapy before HSCT destroys both bone marrow and neoplastic cells, releasing intracellular iron and increasing free iron concentrations [4]. High dose chemotherapy or total body irradiation, components of conditioning prior to HSCT, can damage hepatic cells, resulting in release of intracellular iron pools and contributing to further increases in iron load [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.