Abstract
Tower cranes are commonly used facilities for the construction of high-rise structures. To ensure their workability, it is very important to analyze their response and evaluate their condition under extreme conditions. This paper proposes a general scheme for safety and serviceability assessment of high-rise tower crane to turbulent winds based on time domain buffeting response analysis. Spatially correlated wind velocity field at the location of the tower crane was first simulated using an algorithm for generating the time domain samples of a stationary, multivariate stochastic process according to some prescribed spectral density matrix. The buffeting forces applied to the structure were computed according to the above-simulated wind velocity fluctuations and the lift, drag, and moment coefficients obtained from a CFD computation. Those spatially correlated loads were then fed into a well calibrated finite element model and the nonlinear time history analysis was conducted to compute structural buffeting response. Compared with structural onsite response measurement, the computed response using the proposed method has good precision. The proposed method is then adopted for analyzing the buffeting response of an in-use tower crane under the design wind speed and the maximum operational wind speed for safety and serviceability assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers of Architecture and Civil Engineering in China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.