Abstract

In the typical landscape of road transportation, about 90% of traffic accidents result from human errors. Vehicle automation enhances road safety by reducing driver fatigue and errors and improves overall mobility efficiency. The advancement of autonomous vehicle technology will significantly impact traffic safety, potentially saving more than 30,000 lives annually in the United States alone. The widespread acceptance of autonomous and connected autonomous vehicles (AVs and CAVs) will be a process spanning multiple decades, requiring their coexistence with traditional vehicles. This study explores the mobility and safety performance of CAVs in mixed-traffic environments using the cumulative-anticipative car-following (CACF) model. This research compares the CACF model with established Wiedemann 99 and cooperative adaptive cruise control (CACC) models using a VISSIM platform. The simulations include single-lane and multi-lane networks, incorporating sensitivity tests for mobility and safety parameters. The study reveals increased throughput, reduced delays, and enhanced travel times with CACF, emphasizing its advantages over CACC. Safety analyses demonstrate CACF’s ability to prevent traffic shockwaves and bottlenecks, emphasizing the significance of communication range and acceleration coefficients. The research recommends early investment in vehicle-to-infrastructure (V2I) communication technology, refining CACC logic, and expanding the study to diverse road scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.