Abstract

BackgroundThis study is the first clinical trial for a parenteral non-replicating rotavirus vaccine developed using virus-like particle (VLP) technology. MethodsThis open-labeled, randomized, placebo-controlled trial was conducted in two parts: Part A (a first-in-human study in Australian adults) and Part B (ascending dose and descending age in South African adults, toddlers and infants). In Part A, two cohorts of 10 adults were assigned to receive a single intramuscular injection of 1 of 2 escalating dose levels of the rotavirus VLP (Ro-VLP) vaccine (7 μg or 21 μg) or placebo. In Part B, one cohort of 10 adults was assigned to receive a single injection of the Ro-VLP vaccine (21 μg) or placebo, two cohorts of 10 toddlers were assigned to receive 2 injections of 1 of 2 escalating dose levels of the Ro-VLP vaccine (7 μg or 21 μg) or placebo 28 days apart, and three cohorts of 20 infants were assigned to receive 3 injections of 1 of 3 escalating dose levels of the Ro-VLP vaccine (2.5 μg, 7 μg or 21 μg) or placebo or 2 doses of oral Rotarix 28 days apart. Safety, reactogenicity and immunogenicity were assessed. ResultsThere were no safety or tolerability concerns after administration of the Ro-VLP vaccine. The Ro-VLP vaccine induced an anti-G1P[8] IgG response in infants 4 weeks after the second and third doses. Neutralizing antibody responses against homologous G1P[8] rotavirus were higher in all Ro-VLP infant groups than in the placebo group 4 weeks after the third dose. No heterotypic immunity was elicited by the Ro-VLP vaccine. ConclusionsThe Ro-VLP vaccine was well tolerated and induced a homotypic immune response in infants, suggesting that this technology platform is a favorable approach for a parenteral non-replicating rotavirus vaccine.Clinical Trial Registration: NCT03507738.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call