Abstract

Many clinical studies have evaluated the effect of probiotics, but only a few have assessed their dose effects on gut microbiota and host. We conducted a randomized, double-blind, controlled intervention clinical trial to assess the safety (primary endpoint) of and gut microbiota response (secondary endpoint) to the daily ingestion for 4 weeks of two doses (1 or 3 bottles/day) of a fermented milk product (Test) in 96 healthy adults. The Test product is a multi-strain fermented milk product, combining yogurt strains and probiotic candidate strains Lactobacillus paracasei subsp. paracasei CNCM I-1518 and CNCM I-3689 and Lactobacillus rhamnosus CNCM I-3690. We assessed the safety of the Test product on the following parameters: adverse events, vital signs, hematological and metabolic profile, hepatic, kidney or thyroid function, inflammatory markers, bowel habits and digestive symptoms. We explored the longitudinal gut microbiota response to product consumption and dose, by 16S rRNA gene sequencing and functional contribution by shotgun metagenomics. Safety results did not show any significant difference between the Test and Control products whatever the parameters assessed, at the two doses ingested daily over a 4-week-period. Probiotic candidate strains were detected only during consumption period, and at a significantly higher level for the three strains in subjects who consumed 3 products bottles/day. The global structure of the gut microbiota as assessed by alpha and beta-diversity, was not altered by consumption of the product for four weeks. A zero-inflated beta regression model with random effects (ZIBR) identified a few bacterial genera with differential responses to test product consumption dose compared to control. Shotgun metagenomics analysis revealed a functional contribution to the gut microbiome of probiotic candidates.

Highlights

  • Many clinical studies have evaluated the effect of probiotics, but only a few have assessed their dose effects on gut microbiota and host

  • We evaluated the safety of the daily consumption of two doses (1 or 3 bottles/day) of a fermented milk product (Test product) containing a mix of three Lactobacillus strains, L. paracasei CNCM I-1518, L paracasei CNCM I-3689 and L. rhamnosus CNCM I-3690, selected for their probiotic potential, and four common yogurt strains

  • The results do not raise any safety concerns for the ingestion of the Test product once to three times per day, corresponding respectively to a minimum of 1 × 109 to 3 × 109 and a maximum of 1 × 1011 to 3 × 1011 colony-forming units (CFU)/subject/day, according to the range of bacterial count in the product, for each of the three probiotic candidate strains. These results are consistent with previous studies showing that the consumption of other probiotics at a dose of 1­ 08 to 1­ 011 CFU/day in healthy adult subjects had no significant effect on blood chemistry, metabolic and immune parameters, bowel habits, vital signs or adverse event occurrence, since all these parameters were similar for the placebo products u­ sed[45,53,54]

Read more

Summary

Introduction

Many clinical studies have evaluated the effect of probiotics, but only a few have assessed their dose effects on gut microbiota and host. Double-blind, controlled intervention clinical trial to assess the safety (primary endpoint) of and gut microbiota response (secondary endpoint) to the daily ingestion for 4 weeks of two doses (1 or 3 bottles/day) of a fermented milk product (Test) in 96 healthy adults. L. paracasei CNCM I-1518, modulated the activity of Faecalibacterium prausnitzii in an in vitro gut ­model[20] This strain was extensively studied in clinical trials, in the form of a fermented milk product that had beneficial effects on the incidence and duration of common respiratory and gastrointestinal infections, immunomodulation and antibiotic-associated-diarrhea, and this product was well-tolerated in various populations, including children, adults and the ­elderly[21,22,23,24,25,26,27]. L. paracasei and L. rhamnosus have “qualified presumption of safety” status as notified by the European Food Safety A­ uthority[38], but additional safety evaluations, including assessment of transmissible antibiotic resistance genes, must be conducted prior to use of a QPS strain in f­ood[1]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call