Abstract

The worldwide pandemic of coronavirus disease 2019 (COVID-19) has imposed a challenge on human health worldwide, and vaccination represents a vital strategy to control the pandemic. To date, multiple COVID-19 vaccines have been granted emergency use authorization, including inactivated vaccines, adenovirus-vectored vaccines, and nucleic acid vaccines. These vaccines have different technical principles, which will necessarily lead to differences in safety and efficacy. Therefore, we aim to implement a systematic review by synthesizing clinical experimental data combined with mass vaccination data and conducting a synthesis to evaluate the safety and efficacy of COVID-19 vaccines. Compared with other vaccines, adverse reactions after vaccination with inactivated vaccines are relatively low. The efficacy of inactivated vaccines is approximately 60%, adenovirus-vectored vaccines are 65%, and mRNA vaccines are 90%, which are always efficient against asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, symptomatic COVID-19, COVID-19 hospitalization, severe or critical hospitalization, and death. RNA-based vaccines have a number of advantages and are one of the most promising vaccines identified to date and are particularly important during a pandemic. However, further improvements are required. In time, all the antibody levels weaken gradually, so a booster dose is needed to maintain immunity. Compared with homologous prime-boost immunization, heterologous prime-boost immunization prompts more robust humoral and cellular immune responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call