Abstract

The use of biodegradable polydioxanone (PDO) nano-fibers for various purposes is increasing but the effects of these fibers on immune responses are not well understood. We examined the potential stimulatory and inhibitory effects of PDO coated fibers on immune cell functions in vitro in humans and in vivo in mice. Short term in vitro exposure of human blood to PDO did not perturb the phagocytic function of human monocytes and neutrophils. In contrast lymphocytes exhibited an increased proliferative function in response to polyclonal T cell mitogen, PHA. However, cytokine secretion by monocytes and lymphocytes as well as NK cell cytotoxic effector cell functions were undisturbed by PDO exposure. Long term in vivo exposure to PDO had no effect on dendritic cells activation, cytokine secretion and T regulatory induction. Injection of PDO into mice withrheumatoid arthritis suggested that PDO nano-fibers tend to be anti-inflammatory as an increase in IL-10 was observed in the PDO treated groups. In spite of this the arthritic score and TNF-α and IFN-γ levels were not significantly different between PDO- treated and untreated rheumatoid arthritis induced mice. In conclusion, PDO nano-fibers have no significant adverse effect on immune functions and tend to induce anti-inflammatory responses upon long term exposure in vivo.

Highlights

  • There is much interest and concern on the impact of human exposure to nano-material on health and disease

  • Innate Immune responses are the first line of defense against any foreign material and involve a variety of immune cells which work in tandem to perform different functions to eliminate and neutralize the threat

  • The increasing use of PDO nano-fibers for cosmetic and other purposes [4,5,6,7,8,9,10] makes it imperative to understand its effect on the immune system

Read more

Summary

Introduction

There is much interest and concern on the impact of human exposure to nano-material on health and disease. Nanomaterials are defined as substances less than 100 nm in diameter and possess novel chemical and physical properties. Nano-materials have a wide range of industrial, agriculture, military and medical applications [1]. Humans are exposed to nano-materials accidentally or purposely, when introduced into the body to deliver drugs, for imaging studies or as surgical implants. Nano-materials are recognized by the host as foreign and initiate immune and inflammatory responses [2,3]. Therapeutic nano-materials that down regulate immune responses are of value in the treatment of autoimmune and inflammatory diseases

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call