Abstract

To determine the safety and efficacy of a novel intravascular cooling device (Cool Line catheter with Cool Gard system) to control body temperature (temperature goal <37 degrees C) in neurologic intensive care patients. A prospective, uncontrolled pilot study in 51 consecutive neurologic intensive care patients. A neurologic intensive care unit at a tertiary care university hospital. Patients were 51 neurologic intensive care patients with an intracranial disease requiring a central venous catheter due to the primary (intracranial) disease. We excluded patients under the age of 19 yrs and those with active cardiac arrhythmia, full sepsis syndrome, bleeding diathesis and infection, or bleeding at the site of the intended catheter insertion. Male to female ratio was 31:20, and the median age was 55 yrs (range, 24-85 yrs). Forty-four of 51 patients (86.3%) had an initial Glasgow Coma Scale score of 3, three patients had a Glasgow Coma Scale score of 9, one patient presented with an initial Glasgow Coma Scale score of 11, two patients had an initial Glasgow Coma Scale score of 13, and one patient had an initial Glasgow Coma Scale score of 15. The mean initial tissue injury severity score was 45.1 and the median initial tissue injury severity score 45.0 (range, 19-70). Patients were enrolled prospectively in a consecutive way. Within 12 hrs after admission, the intravascular cooling device (Cool Line catheter) was placed, the temperature probe was located within the bladder (by Foley catheter), and the Cool Gard cooling device was initiated. This Cool Gard system circulates temperature-controlled sterile saline through two small balloons mounted on the distal end of the Cool Line catheter. The patient's blood is gently cooled as it is passed over the balloons. The Cool Gard system has been set with a target temperature of 36.5 degrees C. The primary purpose and end point of this study was to evaluate the cooling capacity of this intravascular cooling device. Efficacy is expressed by the calculation formula of fever burden, which is defined as the fever time product ( degrees C hours) under the fever curve. The cooling device was in operation for a mean of 152.4 hrs. The ease of insertion was judged as easy in 42 of 51 patients; in a single patient, the catheter was malpositioned within the jugular vein, requiring early removal. The rate of infectious and noninfectious complications (nosocomial pneumonia, bacteremia, catheter-related ventriculitis, pulmonary embolism, etc.) was comparable to the rate usually observed in our neurologic intensive care patients with such severe intracranial diseases. The total fever burden within the entire study period of (on average) 152.4 hrs was 4.0 degrees C hrs/patient, being equivalent to 0.6 degrees C hrs/patient and day. Thirty of 51 patients showed an elevation of the body temperature (>37.9 degrees C) within 24 hrs after termination of the cooling study. One awake patient (subarachnoid hemorrhage, Glasgow Coma Scale score 15) experienced mild to moderate shivering throughout the entire period of 7 days. The mortality rate was 23.5%. This novel intravascular cooling device (Cool Line catheter and Cool Gard cooling device) was highly efficacious in prophylactically controlling the body temperature of neurologic intensive care patients with very severe intracranial disease (median Glasgow Coma Scale score, 3-15). Morbidity and mortality rates were consistent with the ranges reported in the literature for such neurologic intensive patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call