Abstract
Rationale: Targeted lung denervation (TLD) is a novel bronchoscopic treatment for the disruption of parasympathetic innervation of the lungs. Objectives: To assess safety, feasibility, and dosing of TLD in patients with moderate to severe COPD using a novel device design. Methods: Thirty patients with COPD (forced expiratory volume in 1 s 30–60%) were 1:1 randomized in a double-blinded fashion to receive TLD with either 29 or 32 W. Primary endpoint was the rate of TLD-associated adverse airway effects that required treatment through 3 months. Assessments of lung function, quality of life, dyspnea, and exercise capacity were performed at baseline and 1-year follow-up. An additional 16 patients were enrolled in an open-label confirmation phase study to confirm safety improvements after procedural enhancements following gastrointestinal adverse events during the randomized part of the trial. Results: Procedural success, defined as device success without an in-hospital serious adverse event, was 96.7% (29/30). The rate of TLD-associated adverse airway effects requiring intervention was 3/15 in the 32 W versus 1/15 in the 29 W group, p = 0.6. Five patients early in the randomized phase experienced serious gastric events. The study was stopped and procedural changes made that reduced both gastrointestinal and airway events in the subsequent phase of the randomized trial and follow-up confirmation study. Improvements in lung function and quality of life were observed compared to baseline values for both doses but were not statistically different. Conclusions: The results demonstrate acceptable safety and feasibility of TLD in patients with COPD, with improvements in adverse event rates after procedural enhancements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Respiration; international review of thoracic diseases
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.