Abstract
With the advance of intelligent transportation system technologies, contributing factors to crashes can be obtained in real time. Analyzing these factors can be critical in improving traffic safety. Despite many crash models having been successfully developed for safety analytics, most models associate crash observations and contributing factors at the aggregate level, resulting in potential information loss. This study proposes an efficient Gaussian process modulated renewal process model for safety analytics that does not suffer from information loss due to data aggregations. The proposed model can infer crash intensities in the continuous-time dimension so that they can be better associated with contributing factors that change over time. Moreover, the model can infer non-homogeneous intensities by relaxing the independent and identically distributed (i.i.d.) exponential assumption of the crash intervals. To demonstrate the validity and advantages of this proposed model, an empirical study examining the impacts of the COVID-19 pandemic on traffic safety at six interstate highway sections is performed. The accuracy of our proposed renewal model is verified by comparing the areas under the curve (AUC) of the inferred crash intensity function with the actual crash counts. Residual box plot shows that our proposed models have lower biases and variances compared with Poisson and Negative binomial models. Counterfactual crash intensities are then predicted conditioned on exogenous variables at the crash time. Time-varying safety impacts such as bimodal, unimodal, and parabolic patterns are observed at the selected highways. The case study shows the proposed model enables safety analytics at a granular level and provides a more detailed insight into the time-varying safety risk in a changing environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.