Abstract

Bisphenol F (BPF) and Bisphenol S (BPS) are safe alternatives substances? Here Drosophila melanogaster were exposed during development (larval stage) to BPF and BPS (0.25, 0.5 and 1mM). Upon reaching the last larval stage (3rd stage), markers of oxidative stress and metabolism of both substances were evaluated, along with investigation of mitochondrial and cell viability. This study is attributed to an unprecedented fact: BPF and BPS exposed larvae, both at concentrations of 0.5 and 1mM, showed higher cytochrome P-450 (CYP450) activity. The GST activity increased in all BPF and BPS concentrations, and reactive species, lipid peroxidation, superoxide dismutase, and catalase activity increased in larvae (BPF and BPS; 0.5, and 1mM); nonetheless, mitochondrial and cell viability decreased with 1mM of BPF and BPS. In addition, the reduced number of pupae formed in the 1mM BPF and BPS groups and melanotic mass formation may be attributed to oxidative stress. From the pupae formed, the hatching rate reduced in the 0.5 and 1mM BPF and BPS groups. Thus, the possible presence of toxic metabolites may be related to the larval oxidative stress condition, which is detrimental to the complete development of Drosophila melanogaster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call