Abstract
Abstract CO2 sequestration is a process for eternity with a possibility of zero-degree failure. One of the key components of the CO2 Sequestration Project is to have a site-specific, risk-based and adaptive Monitoring, Measurement and Verification (MMV) plan. The storage site has been studied thoroughly and is understood to be inherently safe for CO2 sequestration. However, it is incumbent on operator to manage and minimize storage risks. MMV planning is critical along with geological site selection, transportation and storage process. Geological evaluation study of the storage site suggests the containment capacity of identified large depleted gas reservoirs as well as long term conformance due to thick interval. The fault-seal analysis and reservoir integrity study contemplate long-term security of the CO2 storage. An integrated 3D reservoir dynamic simulation model coupled with geomechanical and geochemical models were performed. This helps in understanding storage capacity, trapping mechanisms, reservoir integrity, plume migration path, and injectivity. To demonstrate that CO2 plume migration can be mapped from the seismic, a 4D Seismic feasibility study was carried out using well and fluid data. Gassmann fluid substitution was performed in carbonate reservoir at well, and seismic response of several combination of fluid saturation scenarios on synthetic gathers were analyzed. The CO2 dispersion study, which incorporate integration of subsurface, geomatic and metocean & environment data along with leakage character information, was carried out to understand the potential leakage pathway along existing wells and faults which enable to design a monitoring plan accordingly. The monitoring of wells & reservoir integrity, overburden integrity will be carried out by Fiber Optic System to be installed in injection wells. Significant difference in seismic amplitude observed at the reservoir top during 4D seismic feasibility study for varying CO2 saturation suggests that monitoring of CO2 plume migration from seismic is possible. CO2 plume front with as low as 25% saturation can be discriminated provided seismic data has high signal noise ratio (SNR). 3D DAS-VSP acquisition modeling results show that a subsurface coverage of approximately 3 km2 per well is achievable. Laboratory injectivity studies and three-way coupled modelling simulations established that three injection wells will be required to achieve the target injection rate. As planned injection wells are field centric and storage site area is large, DAS-VSP find limited coverage to monitor the CO2 plume front. Hence, surface seismic acquisition will be an integral component of full field monitoring and time-lapsed evaluations for integrated MMV planning to monitor CO2 plume migration. The integrated MMV planning is designed to ensure that injected CO2 in the reservoir is intact and safely stored for hundreds of years after injection. Field specific MMV technologies for CO2 plume migration with proactive approach were identified after exercising pre-defined screening criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.