Abstract

With the advancement of nanobiotechnology, eco-friendly approaches of plant-mediated silver nanomaterial (AgNP) biosynthesis have become more attractive for biomedical applications. The present study is a report of biosynthesizing AgNPs using Chlorophytum borivilianum L. (Safed musli) callus extract as a novel source of reducing agent. AgNO3 solution challenged with the methanolic callus extract displayed a change in color from yellow to brown owing to the bioreduction reaction. Further, AgNPs were characterized by using UV–visible spectrophotometry, X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). UV–vis spectrum revealed the surface plasmon resonance property of AgNPs at around 450 nm. XRD pattern with typical peaks indicated the face-centered cubic nature of silver. AFM analysis confirmed the existence of spherical-shaped and well-dispersed AgNPs having an average size of 52.0 nm. Further, FTIR analysis confirmed the involvement of different phytoconstituents of the callus extract role in the process of bioreduction to form nanoparticles. The AgNPs were more efficient in inhibiting the tested pathogenic microbes, namely, Pseudomonas aeruginosa, Bacillus subtilis, Methicillin-resistant Escherichia coli, Staphylococcus aureus, and Candida albicans compared to callus extract. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the cytotoxic property of AgNPs against human colon adenocarcinoma cell line (HT-29) in a dose-dependent manner. At higher concentrations of 500 μg/mL AgNPs, the cell viability was observed to be only 7% after 24 hours with IC50 value of 254 μg/mL. Therefore, these AgNPs clearly endorse the manifold potential to be used in various biomedical applications in the near future.

Highlights

  • As an emerging field of science in the modern world, nanotechnology has greatly benefited humans

  • When the AgNO3 solution was challenged with the methanolic callus extract of Safed musli, there was a change in the color from yellow to light brown due to bioreduction reaction (Figure 2)

  • This clearly suggests the biosynthesis of AgNPs, which is correlated to the excitation of surface plasmon resonance vibrations in AgNPs [9, 18, 25]

Read more

Summary

Introduction

As an emerging field of science in the modern world, nanotechnology has greatly benefited humans. Journal of Nanomaterials used for the synthesis of nanomaterials for specific biomedical applications They include silver (Ag), gold (Au), titanium dioxide (TiO2), zinc oxide (ZnO), copper oxide (CuO), magnesium oxide (MgO), calcium oxide (CaO), and silica (Si). These nanostructures exhibit unique physicochemical and biological properties, including strength, plasticity, durability, and functions. Silver is used to synthesize silver nanoparticles (AgNPs) for different applications in the fields of medicine, food, health care, etc This is due to the fact that AgNPs with a larger surface area-to-volume ratio possess unique biological, electrical, thermal, and optical properties [6,7,8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call