Abstract

When an unexpected obstacle occupies some of the lanes on a multi-lane highway, connected vehicles (CVs) may be able to avoid it cooperatively. For example, a CV that detects the obstacle first can immediately notify the following vehicles of the obstacle by using vehicle-to-vehicle (V2V) communication. In turn, the following vehicles can take action to avoid the obstacle smoothly using wide range behind the obstacle without sacrificing safety and ride comfort. In this study, we propose a method to realize safe, smooth, and fair wide-range cooperative lane changing, reacting to a sudden obstacle on the road. The proposed method is based on the authors’ previous work, which utilizes multi-hop communication to share the obstacle position and controls the inter-vehicular distance of vehicles away from the obstacle to assist in a smooth lane changing operation, while existing lane-changing methods for CVs focus on microscopic operation around the obstacle. Though the previous work treats only a two-lane road, the proposed method is extended to work on a three- or more lane road assuming only one lane is blocked. In the proposed scheme, each vehicle approaching the obstacle selects a lane to change to in accordance with the obstacle’s location and the vehicle density in each lane estimated from the beacon messages broadcast by each CV, thereby improving traffic fairness among all lanes without degrading safety or ride comfort. We confirmed the effectiveness of the proposed scheme on realizing fairness among lanes, safety, ride comfort, and traffic throughput through comprehensive simulations of a two-lane road and a three-lane road with various traffic scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call