Abstract

To determine the safe range of shortening the spinal column at middle thoracic spine and to observe the changes in blood-spinal cord barrier (BSCB), microglia/macrophage activation and inducible nitric oxide synthase (iNOS) activity after shortening-induced spinal cord injury. Dogs were allocated to four groups. Group A (control) underwent laminectomy of T7 without shortening the spinal column. Groups B, C and D had 1/3, 1/2, and 2/3 of T7 resected, respectively, followed by spinal shortening. Somatosensory evoked potential (SSEP) and hind-limb function were recorded periodically for 14days after operation. Spinal cord blood flow (SCBF) and BSCB were detected at the acute phase of shortening. Microglia/macrophage reactions and iNOS activity were observed by immunohistochemistry. Shortening of 1/3 of a vertebral height caused no significant changes in SSEP and hind-limb function after operation, whereas shortening of 1/2 of the height caused SSEP abnormality and paraparesis, and severe neurologic deficit of hind-limb was observed when the shortening reached 2/3 of the height. SCBF increased temporarily and showed a trend of recovery when the shortening was within 1/2 of a vertebral segment height. When it reached 1/2 or 2/3 of the height, SCBF at 6h post-operation was 86.33% or 74.95% of the baseline, and an increasing BSCB permeability was observed. In the subsequent 7days, obvious activation of macrophage and increased number of iNOS-positive cells were observed. It is safe to shorten the spinal cord within 1/3 of a vertebral height in middle thoracic spine under two-segment laminectomy in canine. The BSCB disruption, macrophage activation, and increased iNOS activity were observed in the acute phase of the injury. These slides can be retrieved under Electronic Supplementary Material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.