Abstract

Truck platooning—digitally linking two or more trucks to travel in a closely spaced convoy—is an emerging technology with the potential to save fuel and reduce labor. A framework is described to determine how much a platoon permit load might be increased above Federal Bridge Formula B legal limits, given strict control over the load characteristics and operational tactics. Soon, platoons are expected to advance not only with respect to traffic operations but also in their ability to weigh and report axle weight and spacing, functioning as mobile weigh-in-motion vehicles. Consequently, platoon live load statistics (bias and coefficient of variation) can differ from code assumptions, and are perhaps controllable, which poses a significant opportunity with respect to operational strategies. A parametric study is presented that examined safe headways between platooning trucks, considering different girder spacings, span lengths, numbers of spans, types of structure, truck configurations, numbers of trucks, and adjacent lane loading scenarios. The Strength I limit state was evaluated for steel and prestressed concrete I-girder bridges optimally designed using load and resistance factor design. Reliability indices, β, were calculated for each load case based on Monte Carlo simulation. Summary headway guidance was developed and is presented here to illustrate potential safe operational strategies for varying truck weights and platoon live load effect uncertainties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call