Abstract

This paper proposes a novel formation control design for safe platooning and merging of a group of vehicles in multi-lane road scenarios. Provided a leader vehicle is independently controlled, the objective is controlling the follower vehicles to drive in the desired lane with a constant desired distance behind the neighboring (preceding) vehicle while preventing collisions with both the neighboring vehicle and the road’s edges. Inspired by the recent concept of constructive barrier feedback, the proposed controller for each follower vehicle is composed of two parts: one is the nominal controller that ensures its tracking of the neighboring vehicle; another is for collision avoidance by using divergent flow as a dissipative term, which slows down the relative velocity in the direction of the neighboring vehicle and road edges without compromising the nominal controller’s performance. The key contribution of this work is that the proposed control method ensures collision-free platooning and merging control in multi-lane road scenarios with computational efficiency and systematic stability analysis. Simulation results are provided to demonstrate the effectiveness of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.