Abstract

Volt-VAR control is critical to keeping distribution network voltages within allowable range, minimizing losses, and reducing wear and tear of voltage regulating devices. To deal with incomplete and inaccurate distribution network models, we propose a safe off-policy deep reinforcement learning algorithm to solve Volt-VAR control problems in a model-free manner. The Volt-VAR control problem is formulated as a constrained Markov decision process with discrete action space, and solved by our proposed constrained soft actor-critic algorithm. Our proposed reinforcement learning algorithm achieves scalability, sample efficiency, and constraint satisfaction by synergistically combining the merits of the maximum-entropy framework, the method of multiplier, a device-decoupled neural network structure, and an ordinal encoding scheme. Comprehensive numerical studies with the IEEE distribution test feeders show that our proposed algorithm outperforms the existing reinforcement learning algorithms and conventional optimization-based approaches on a large feeder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.