Abstract
The increasing penetration of distributed renewable energy resources brings a great challenge for real-time voltage security of distribution grids. The paper proposes a safe multi-agent deep reinforcement learning (MADRL) algorithm for real-time control of inverter-based Volt-Var control (VVC) in distribution grids considering communication delay to minimize the network power loss, while maintaining the nodal voltages in a safe range. The multi-agent VVC is modeled as a constrained Markov game, which is solved by the MADRL algorithm. In the training stage, the safety projection is added to the combined policy to analytically solve an action correction formulation to promote more efficient and safe exploration. In the real-time decision-making stage, a state synchronization block is designed to impute the data under the latest timestamp as the input of the agents deployed in a distributed manner, to avoid instability caused by communication delay. The simulation results show that the proposed algorithm performs well in safe exploration, and also achieves better performance under communication delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.