Abstract
Safety is the main concern for energy storage-system application in hybrid-electrical vehicles (HEVs) and ionic liquids (ILs) of low vapor pressure and high thermal stability represent a strategy to meet this key requisite. The use of solvent-free ILs in supercapacitors enables the high cell voltages required for increasing supercapacitor energy up to the values for power-assist application in HEVs. In order to exploit the wide electrochemical stability window of ILs, tailored electrode materials and cell configurations have to be used. The performance of asymmetric double-layer carbon supercapacitors (AEDLCs) and carbon/poly(3-methylthiophene) hybrid supercapacitors operating with different pyrrolidinium-based ILs are reported and compared. This study demonstrates that a design-optimized AEDLC operating with safe, solvent-free IL electrolyte meets cycling stability and the energy and power requisites for power-assisted HEVs at the investigated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.