Abstract

The problem of achieving fault-tolerant supervision of discrete-event systems is considered from the viewpoint of safe and timely diagnosis of unobservable faults. To this end, the new property of safe diagnosability is introduced and studied. Standard definitions of diagnosability of discrete-event systems deal with the problem of detecting the occurrence of unobservable fault events using model-based inferencing from observed sequences of events. In safe diagnosability, it is required in addition that fault detection occur prior to the execution of a given set of forbidden strings in the failed mode of operation of the system. For instance, this constraint could be required to prevent local faults from developing into failures that could cause safety hazards. If the system is safe diagnosable, reconfiguration actions could be forced upon the detection of faults prior to the execution of unsafe behaviour, thus achieving the objective of fault-tolerant supervision. Necessary and sufficient conditions for safe diagnosability are derived. In addition, the problem of explicitly considering safe diagnosability in controller design, termed “active safe diagnosis problem”, is formulated and solved. A brief discussion of safe diagnosability for timed models of discrete-event systems is also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.