Abstract

Guaranteeing safety for robotic and autonomous systems in real-world environments is a challenging task that requires the mitigation of stochastic uncertainties. Control barrier functions have, in recent years, been widely used for enforcing safety related set-theoretic properties, such as forward invariance and reachability, of nonlinear dynamical systems. In this letter, we extend this rich framework to nonlinear discrete-time systems subject to stochastic uncertainty and propose a framework for assuring risk-sensitive safety in terms of coherent risk measures. To this end, we introduce risk control barrier functions (RCBFs), which are compositions of barrier functions and dynamic, coherent risk measures. We show that the existence of such barrier functions implies invariance in a coherent risk sense. Furthermore, we formulate conditions based on finite-time RCBFs to guarantee finite-time reachability to a desired set in the coherent risk. Conditions for risk-sensitive safety and finite-time reachability of sets composed of Boolean compositions of multiple RCBF are also formulated. We show the efficacy of the proposed method through its application to a cart-pole system in a safety-critical scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.