Abstract

In this in-vitro study, a gradient-in-power approach aims to ensure no temperature elevation beyond the necrosis limit (5.5 °C) during laser cavity preparation of dental hard tissues. The applied optimal Er,Cr:YSGG laser parameters were: 20 Hz pulse repetition rates (prr), average powers at a maximum of 5.5 W for enamel switched to a maximum of 3.5 W for dentine surface specimens. A fabricated fast-response all-optical fiber sensor was used to monitor temperature change simultaneously. A scanning electron microscope (SEM) and a Fourier transform infrared (FTIR) spectroscopy were used to assess the irradiated surfaces. Holes of 500 µm in depth were obtained with no morphological and chemical alterations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call