Abstract

Aberrant scaffold attachment factor-B2 (SAFB2) expression is associated with several malignant tumors. In this study, we investigated how SAFB2 worked in the process of breast cancer as well as the underlying mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were used to investigate the expression of SAFB2 and nuclear factor of activated T cells 5 (NFAT5). Cellular proliferative ability was detected with cell counting kit 8 (CCK8), colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) staining assays. Cell apoptosis was measured via flow cytometry and western blotting analysis. Wound healing, transwell assays, and western blotting analysis were executed to estimate cell migration and invasion. The relationship between SAFB2 and NFAT5 was verified by RNA immunoprecipitation (RIP) assay and NFAT5 mRNA stability was examined with actinomycin (Act) D assay. Western blotting analysis also tested the expression of Wnt/β-catenin signaling-associated proteins. As a result, SAFB2 was downregulated in breast cancer cell lines, while NFAT5 was highly expressed in most breast cancer cell lines. Overexpression of SAFB2 suppressed the proliferation, migration, and invasion while exacerbated the apoptosis of breast cancer cells. SAFB2 interacted with NFAT5 mRNA and declined the stability of NFAT5 mRNA. Overexpression of NFAT5 counteracted anti-proliferative, anti-metastatic and pro-apoptotic effects of SAFB2 in breast cancer cells. Mechanistically, SAFB2 overexpression inhibited the Wnt/β-catenin signaling pathway, while this effect was partially eliminated by NFAT5. Collectively, SAFB2 hindered breast cancer development and inactivated Wnt/β-catenin signaling via regulation of NFAT5, suggesting that SAFB2 might be a promising therapeutic target for breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.