Abstract

Six-mercaptopurine (6-MP) is a pro-drug widely used in treatment of various diseases, including acute lymphoblastic leukaemia (ALL). Side-effects of thiopurine therapy have been correlated with thiopurine methyltransferase (TPMT) activity.We propose a novel TPMT-mediated mechanism of S-adenosylmethionine (SAM)-specific effects on 6-mercaptopurine (6-MP) induced cytotoxicity in a model cell line for acute lymphoblastic leukemia (MOLT). Our results show that exogenous SAM (10–50μM) rescues cells from the toxic effects of 6-MP (5μM) by delaying the onset of apoptosis. We prove that the extent of methylthioinosine monophosphate (MeTIMP) induced inhibition of de novo purine synthesis (DNPS) determines the concentrations of intracellular ATP, and consequently SAM, which acts as a positive modulator of TPMT activity. This leads to a greater conversion of 6-MP to inactive 6-methylmercaptopurine, and thus lower availability of thioinosine monophosphate for the biotransformation to cytotoxic thioguanine nucleotides (TGNs) and MeTIMP. We further show that the addition of exogenous SAM to 6-MP treated cells maintains intracellular SAM levels, TPMT activity and protein levels, all of which are diminished in cells incubated with 6-MP. Since TPMT mRNA levels remained unaltered, the effect of SAM appears to be restricted to protein stabilisation rather than an increase of TPMT expression. We thus propose that SAM reverses the extent of 6-MP cytotoxicity, by acting as a TPMT-stabilizing factor.This study provides new insights into the pharmacogenetics of thiopurine drugs. Identification of SAM as critical modulator of TPMT activity and consequently thiopurine toxicity may set novel grounds for the rationalization of thiopurine therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call