Abstract

Optical Whispering Gallery Mode (WGM) resonators are an ideal platform for highly sensitive sensors and nonlinear interactions. They exhibit extremely high quality (Q) factors, providing a sensing platform with low detection limit to environmental changes and optical confinement for low threshold nonlinear stimulation. Here we demonstrate a new type of WGM resonator we coin as a Saddle-Shape Microresonator (SSM). The unique modal properties of the SSM's WGMs significantly differs them from spheres, disks, toroids, and other well-known microresonator types. We show that the SSM offers, in addition to the many attractive attributes that are found in "fiber-tip" sphere microresonators, the added characteristic of structural stability of a taper coupled resonator. The combination of these traits make it ideal for strain-based sensing, cavity quantum electrodynamics, and for real life applications in which mechanical tunability of the microresonator's WGMs is essential. The distinctive structure of SSMs – allowing exceptional high mechanical stability as well as mechanical tunability – opens a route to manufacture miniature packaged fiber-coupled WGM microresonators-based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.