Abstract

Saddlepoint conditions on a predictor are introduced and developed to reconfirm the need for the assumption of a prior distribution in constructing a useful inferential procedure. A condition yields that the predictor induced from the maximum likelihood estimator is the worst under a loss, while the predictor induced from a suitable posterior mean is the best. This result indicates the promising role of Bayesian criteria, such as the deviance information criterion (DIC). As an implication, we critique the conventional empirical Bayes method because of its partial assumption of a prior distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.