Abstract

The saddlepoint approximation formulas provide versatile tools for analytic approximation of the tail expectation of a random variable by approximating the complex Laplace integral of the tail expectation expressed in terms of the cumulant generating function of the random variable. We generalize the saddlepoint approximation formulas for calculating tail expectations from the usual Gaussian base distribution to an arbitrary base distribution. Specific discussion is presented on the criteria of choosing the base distribution that fits better the underlying distribution. Numerical performance and comparison of accuracy are made among different saddlepoint approximation formulas. Improved accuracy of the saddlepoint approximations to tail expectations is revealed when proper base distributions are chosen. We also demonstrate enhanced accuracy of the generalized saddlepoint approximation formulas under non-Gaussian base distributions in pricing European options on continuous integrated variance under the Heston stochastic volatility model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.