Abstract

The Fisher–Bingham distribution is obtained when a multivariate normal random vector is conditioned to have unit length. Its normalising constant can be expressed as an elementary function multiplied by the density, evaluated at 1, of a linear combination of independent noncentral χ12 random variables. Hence we may approximate the normalising constant by applying a saddlepoint approximation to this density. Three such approximations, implementation of each of which is straightforward, are investigated: the first-order saddlepoint density approximation, the second-order saddlepoint density approximation and a variant of the second-order approximation which has proved slightly more accurate than the other two. The numerical and theoretical results we present showthat this approach provides highly accurate approximations in a broad spectrum of cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.