Abstract

Saddlepoint techniques provide numerically accurate, small sample approximations to the distribution of estimators and test statistics. Except for a few simple models, these approximations are not available in the framework of stationary time series. We contribute to fill this gap. Under short or long range serial dependence, for Gaussian and non Gaussian processes, we show how to derive and implement saddlepoint approximations for two relevant classes of frequency domain statistics: ratio statistics and Whittle’s estimator. We compare our new approximations to the ones obtained by the standard asymptotic theory and by two widely-applied bootstrap methods. The numerical exercises for Whittle’s estimator show that our approximations yield accuracy’s improvements, while preserving analytical tractability. A real data example concludes the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.