Abstract

We study codimension 3 degenerate homoclinic bifurcations under periodic perturbations. Assume that among the 3 bifurcation equations, one is due to the homoclinic tangecy along the orbital direction. To the lowest order, the bifurcation equations become 3 quadratic equations. Under generic conditions on perturbations of the normal and tangential directions of the homoclinic orbit, up to 8 homoclinic orbits can be created through saddle-node bifurcations. Our results generate the homoclinic tangency bifurcation in Guckenheimer and Holmes [ 8 ].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.