Abstract
The Saddle Mountain fault, first recognized in the early 1970s, is now well mapped in the Hoodsport area, southeastern Olympic Peninsula (northwestern United States), on the basis of light detection and ranging (LIDAR) surveys, aerial photography, and trench excavations. Drowned trees and trench excavations demonstrate that the Saddle Mountain fault produced a M W 6.5–7.0 earthquake 1000–1300 yr ago, likely contemporaneous with the M W 7.5 Seattle fault earthquake 1100 yr ago and with a variety of other fault and landslide activity over a wide region of the Olympic Peninsula and Puget Lowland. This near synchroneity suggests that the Saddle Mountain and Seattle fault may be kinematically linked. Aeromagnetic anomalies and LIDAR topographic scarps define an en echelon sequence of faults along the southeastern Olympic Peninsula of Washington, all active in Holocene time. A detailed analysis of aeromagnetic data suggests that the Saddle Mountain fault extends at least 35 km, from 6 km southwest of Lake Cushman northward to the latitude of the Seattle fault. A magnetic survey over Price Lake using a nonmagnetic canoe illuminated two east-dipping reverse faults with 20 m of vertical offset at 30 m depth associated with 2–4 m of vertical displacement at the topographic surface. Analysis of regional aeromagnetic data indicates that the Seattle fault may extend westward across Hood Canal and into the Olympic Mountains, where it terminates near the northward terminus of the Saddle Mountain fault. The en echelon alignment of the Saddle Mountain and nearby Frigid Creek and Canyon River faults, all active in late Holocene time, reflects a >45-km-long zone of deformation that may accommodate the northward shortening of Puget Lowland crust inboard of the Olympic massif. In this view, the Seattle fault and Saddle Mountain deformation zone form the boundaries of the northward-advancing Seattle uplift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.